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Abstract

Weusca radar-derived physical inodel of the kilometer sized, uniformly rotating asteroid 4769
‘astalia (1989 PB) to investigate close orbit dynamics. We establish thata Jacobiintegral exists for

particles orbiting this asteroid, andthe attendant zero velocity surfaces are gencrated and examined. We
find familics of periodic orbits and determine their stability. We find that all syn chronous orbits and direct
orbits within ~ 3 mcan radii of Castalia arc unstable and arc subject to impact or cscape from Castalia,
Wec findthat retrograde orbits arc mostlystablcand allow particles to orbit closely to the asteroid surface.

We derive a model which allows us to predict the escape conditions of a particlein orbit about
Castalia and the caplure conditions of a hyperbolic interloper. Orbits within 1.5 km of Castalia arc subject
to immediate cjection from the system. Hyperbolic orbits with aVi, <0.4 m/s can potentially be
capturced by Castalia if their periapsis radius is within~ 2 k. }or Castalia this capture region is small,
but the results also apply to larger asteroids whose capture regions would be larger in general.

We determine bounds 011 cjecta speeds which either ensurc ejecta escape orre-impact as a function
of location 011 Castalia’s surface. T'he ejectaspeeds which ensure escape range fiom 0.35 to 0.65 m/s over
the aster 0id’s surface. The ¢jecta speeds which ensure re-impact range from O to 0.15 /s over the surface.
Fjecta speeds between these two bounds lead to cither escape, re -impact or potentially finite time stable
orbits. We dcevelop asimple criterion which can establish whether a particle could have been ejected from
the asteroid iu the past or if it will impact the surface in the future.

The methods of analysis we develop in this paper arc applicable to all uniforinly rotating asteroids.
They provide a basis from which systematic studies of particle dynamics close to uuiformly rotating
asteroids canbeclaunched.

1 Introduction

In the near future anincreasing number of small, near Barth asteroids will have their shape and
rotational dynamics estimated using grou]]d-based range-doppler radar imaging. Thieintent of this
paper is Lo provide adetailed look at the orbital dynamics associated with Asteroid 4769 Castalia
(1989 PB),andto develop general analysis tools which candescribe these dynamicsin a
meaninglul way. Suchan investigation will hopefully providethe basis for future investigations of
uniformly rotating asteroids when these data sets become more common.



The gravity field near this kilometer-sized Iarth-crosser is inodeled by combining a
radar- derived 3-13 shape model (Hudson & Ostro 1994), an assumed uniform density of 2.1 glcc,
and a4.07-hour rotation about the model’s largest moment of inertia, ‘The gravity field canbe
expressed in clod form as a polyhedron or interins of standard gravitational harmonic
cocflicients.

In this paper we explore close-or])it dynamics around the kilolticter-sized object 4769
Castalia (1989 PB), the first Barth-crossing asteroid for which arealistic shapemodel exists. A
detailed understanding of the dynamics of orbits close to sinall(kilometer sized), irregularly
shaped asteroids is required for realist, ic investigation of thesystemnatics of cratering ¢jectaand the
cvolution of those objects’ regoliths. The stability of close orbits bears on questions about possible
satellites of smallbodies and on the practical challenge of mancuvering spacecraft near the surfaces
of such targets as Barth-approaching asteroids. Several authors have touched 011 theissue of
close-orl]it dynamics (Chauvincauet al., 1994, Cintalact al., 1979, Dobrovolskis & Burns, 1980,
Schiceres 1994 & 1995, Weidenshilling et al., 1989, Harris, 1987, Geissler et al., 1994, Petitet al.,
1994) and a few studies have examined some of the relevant physics [WHAT DOES THIS M FANT].
However, the previous dynamics Jiterature has used simplistic shape modecls in general (ellipsoids)
or hasnot dealt withthe full nature of the dynamics of particles ncaran irregular shape.

Section 2 deseribes the gcncration and description of the Castaliashape, rotational
dynamics and density model. Ther, we state the general equations of motion of a particle about
such anasteroid, discuss theintegrals of inotion of these collations, andexpress the dynainic
cqualions interms of the osculating elements.

With this basc information a number of dynamical results for the shape modelare derived
and discussed in Section 3. First we calculate zero velocity surfaces of the asteroid andexplainthe
relevant information which can be obtained from them. Next we compute families of periodic orbits
and deterimine their stability obtaining general insights mto particle inotionin various regimes
about the asteroid. Then we derive some genera] results onthe dynamics of near-cquatorial orbits.
This analysis enables us to estimmate under what conditions a passing hyperbolic particle could
becomne captured by Castalia, and conversely under what conditions an orbiting particle could be
¢jected from the Castalia system. For completeness we review the dynamies of particles in
retrograde orbits. It is scen that such orbits inay be qualitatively described using simple formulac.

We also confront several 1ssues associated with trajectories of cratering ¢jecta and regolith
evolution in general. First we discuss the local slopes onthe Castalia surface in the context of the
gravity field andcentripetal accelerations. ‘1'hen we develop a criterion which can discriminate
whether or not an orbiting particle could have ©M&M ated from the surface of Castalia. This
criterion is useful inestablishing whether a co-orbital could be an ¢jecta of the asteroid or if could
iinpact the asteroid surface in the future. We characterize the evolution of ejectafromthic surface
of Castalia. To this end, estiinates of the speed above which an¢jecta will definitely escape the
Castalia system as well as estimates of the speed helow which an ejects will definitely fall back
ontothe surface of Castalia arc defined as a function of position 011 Castalia’s surface. Finally wc
examine the possibility of ¢jecta being trappedinstable orbits and draw conclusions about the
likely distribution of re-impact ¢jectaonthe surface.

Somic specific orbital results have been generated about the Castaliainodel and recorded in
video forinat (DeJong, 1995). This video depicts several different particle orbits ininertial,
Castalia-fixed or particle-fixed viewpoints. It is useful for visualizing. thedynamics of particles
about a small asteroid such as Castalia. Included in the video arc Segme]ltsdcl”c““g gjects return
and escape orbits, stable retrograde orbits, unstable polar periodicorbits (at varying densities)and
a hypothetical landing orbit for a powered spaceciaft.




2 Castalia Model and Gravity Field

Hudson and Ostro (1994) used techniques first described by Hudson (1993) toinvert delay-l1h])])]cr
radar images of Castalia that had been obtained al Arecibo in 1989 by Ostro et el. (1990). Theair
inversion yielded al67 -paramecter, 3-1) shape modcl that is bifurcated into two distinet, irregular,
liiloltlcter-sized lobes separated by a crevice that has an average depthof at least 100 mand is
oriented nearly perpendicular to the asteroid’s diinension. 'This inversion assumed uniforin density
and principal-axis rotation to ensure plausible extrapolation of the reconstructed surface into the
(polar) region not. seen by the radar. In this paper we adoptthe shape model of Hudson and Ostro

as a global estimate of the shape of Castalia realizing that quantitative results stated for the
southern regions arc not well-collstraincd but are 1mcrely plausible estimates. The asteroid’s

rotation period, estitmated from the radar iinages and also from optical light curves (Hudson, Ostro
and Harris, 1995, in prep.), is 4.07 h. Themodel’s voluine is 0.671 km®, which corresponds to a
meanradius of 0.543km. A contour plot of the radius of Castalia is showninligure 1.
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Figure 1: Radius Contours of Castalia
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For describing positions about Castalia we use a body-fixed coordinate system whose origin

is at the 11 odel’s centroid and whose axes (2,y, 2) correspond to the principal axes of sinallest,

intermediate and its largest moment of inertia, respectively. The model’s rotation pole lies along
the 2-axis andits shape fits into the bounding box, centercd at its center of mass,




--0.762< ¢ < 0.851, - 0.462< y< 0.519, -0.444 <z <0.382.Theratios of the moments of inertia
arc:

1,/1, = 0.37207 1)
1,/1. = 0.93805 @)

Anestimate of Castalia’s density is derived using the following argument. First, estimates of
Castalia’s radar cross scction and polarization ratio, when interpreted in the context of the Hudson
and Ostro, 1994 modeling (sce footnote 13 of that reference), suggests that the asteroid’s radar
al bedo duc to single back reflections from smooth surface elements is within40% of 0.12. That
albedo is a first approximation to the Fresnel power-reflection coefficient R, which in turn (in this
situation) can be related to surface bulk density p through cinpirical formulae like

p(R) = (R4 0.13)/0.12 3)

This logic leads to aninterval, 1.7< p< 2.5 g/em®, for the smooth component of Castalia’s
surface. We adopt anominal value of 2.1, which corresponds to respective porosites of 60% and
40% for ordinary chondrites and stony irons, the candidate mcteorite analogs for S class asteroids
like Castalia,

That density gives a totalmass

M= 14001 x 10"”kg 4)
and a gravitational paramecter
g =GM= 9.40 x 1078 kmS/SL) (5)

where G = 6.67259 x 10" *kin®/kg/s?.

There arc two practical approaches for generating the corresponding constant density
gravitational field. 'Themore common one determines the coeflicients of aharmonic expansion of
the gravity field. As is known classically (MacMillan,1930), the gravitationalficld of any arbitrary
body may be expressed as au infinite scries expansion. The determination of these series
cocflicients is perforined by repeatedly integrating over the entire volume of the shape, one
integration for cach coefficient. If constant density isassuined, these volume integrations mnay be
reduced to integrations over the surface of the body. The most important terins of the harmonic
expansion of the gravity ficld correspond to the Cog and C22 cocflicients. For the Castalia model
these are found to be:

Coo = -7.275 x 107 %/r2 o
Cop = 2.984 x107%/r? (7)

where 7, is an arbitrary normalization radius. In tile appendix is a brief description of the gravity
field expansion and a table giving the gravitational coeflicients up to order 4. The computations
used in this paper usc gravitational cocflicients up to order 16. The approximation error is usually
smallif suflicient terins arc kept. If the gravity field is evaluated close to or withinthe nominal
radius chosen for the body thenthe error may becomne larger as the higher order gravitational
terms then carry relatively inore weight,. IFor the Castalia gravity field a normalization radius of
.5431 ki is used, which is the mean radius of thebody.

Another approach is to usc a polyhedral shape approximationandthe exact closed forin
expression of the gravitational field of a polyhedron(Werner, 1994). This approach is especially
attractive when cvaluation of the gravity field inust bemade c.lose to or onthe surface of the
asteroid. Inthis situation there arc no singularities in the interior of tile gravity field, as this
formulation satisfies Poisson’s equation intheinterior of the body. The disadvantage of this
approach is the computational time required. Every time the potential (or accelerations) are




evaluated, a summmationover every face of the polyhedral shape must be perforined. This is
equivalent to computing onc cocflicient in the harimonic expansion. T'h us, if the accelerations are
to be computed over some time span, it is clearly more eflicient to use a harmonic expansion.
However this formulation is well suited to running ou a parallel cornputer.

3 Equations of Motion and Conserved Quantities

Given a gravitational field and the rotational state of themodel, the equations of motioninay be
written. The most eflicient expression of these equations is given inthe |~ody-fixed frame of the
asteroid. Givenanintegrated resultin this frame, it is easy to transformnto the inertial framc if
desired. The benefit of this formulation is that no rotational transformations miust be made to
cvaluate the gravitational accelerations and that the equations of motion are timeinvariant for a
uniformly rotating central body.

For the general rotation of an asteroid the body fixed equations of motion for a small
particle are (Greenwood, 1965, pp 50-51):

FA20X P4 QX (Qxr)4 Q2 xr = Up (8)

wherer is the Imdy-fixed vector froin the asteroid center of inass, (--) and (- ) are first andsccoud
time derivatives withrespect to the body-fixed, rotating fraine, {2 is theinstantancous rotation
vector of the asteroid withmagnitude |Q2|= w, and Uy is the gradient of the gravitational potential
U(r) which is time-invariant in a body-fixd framec.

‘1’0 analyze the dynamical equationsit is of interest to find conserved quantities, or integrals.
Define the function J:

1. .1
J = -2'1"1'*:2 ((2 X l') (SZ Xl') - U(r) (9)
where all the quantites arc as defined previously. Take the time derivative of this function,
performing al differentiat ions with respect to the body-fixed frame:

Jo= 5 (Q xx). (er) (9 xE) (2 xE) - Up(r) i (10)
Next, take the dot product of Equation 8 with r and re-arrange the results:

e (@xn) - (@x )i (2 x ) Tl F = g (11)
Combine Equations 10 and 11 to oblain:

J = Q- (vixr) (12)

v = 14 Qxr (13)

where vy is theinertial velocity of the test particle. If the asteroid is inprincipal axis rotation (i.e.
Q= 0) thenthe quantity J is conserved, and is in fact the Jacobiintegral for the equations of
motion. Thus uniform rotation of the asteroid implies that au integral of the motion exists. An
equivalent stateinent is that the equations of motion (inthe body-fixed frame) arc time invariant
when Q= o.

Since Castalia is a umforinly rotating asteroid, henceforth we assumecthe Jacobi function to
be constant unless otherwise noted. “1'bus, given aninitial particle positionand velocity,the Jacobi
function J (v, r) is constant, for all ensuinginotion of that particle. Thercare a variety of initial
conditions which may lead to the saine constant value of the Jacobi function, so it is uscfulto
define the Jacobi constant €' such that:

Je, ) +C= 0 (14)




Recall the standard definition of the Keplerian (or two-body) encrgy

, 1 It
Co = =vyi-vj »m

2
where vy is the inertial velocity vector of the particle, ji is the gravitational parameter of the
attracting body and|r]is the Euclidiannorn of the particle position vector. Let us express this
quantity inthe body-fixed, rotating reference frame using the substitutjon: v, = ¢ +- Q x r. Also,
assume that the gravity force potential U of the asteroid is expressed as:

Ur) = T’fﬁz:l/i(r) (16)

(15)

where the U;terms correspond to al the higher degree and order harmonics of the general gravity
field. Then the Keplerian energy is:

1 —
Cy = %1‘ - U@E)+ 1 (2 xr)+ 2 (Qxr)- (2 xr)+ 2: Ui(r) 1n

Substitution of the formalJacobian integral (Iquation 14) into the above equation yields the result:

Cy= ) Ui(@) + (2 xv)- (49 X r)- C (18)

)
where ¢ = - J is the Jacobian constant, Take the tine differential of the Keplerian energy to find:
Cy v Y VU() -5+ [i- 22 x 4] (2% 1) (19)

Substitute in Kquations 8, noting that V(e Ir]) = pr/|r]3, to find the final result:
C‘z = 2: VUi (v)- vy (20)
i
vi = r4Qxr (21)
where the inertial velocity vector vymay also beexpressed as:

24
er‘fsin,f . _,
= — Sr+rfvy 29
Vi a(i - ¢2) va (22)
with V7 the unit ¢OM ponent of the velocity normaltothe radius vector. This result may also be
restated inthemore intuitive form:

Gy = S Ulx) (23)

where the U/ terimdenotes the time derivative of [ Jwithrespect to the inertial frame.
Interms of the osculating Keplerian elements, the two-body energy is:
oo 1 (24)
? 2a
where a is the osculating semi-major axis of the orbit. Taking the time derivative of thisandusing
Equation23 results in:
2 !

@ = =5 U (25)
)




where n is the mean motion of the orbit (n=+/st/a3). Onc also has from the Lagrange planctary
equations the result (Kaula):

205U (26)

a = ey
na " OM

where M is the mean anomaly of the orbit. From Equations 25 and 26 we fitid:

95, U; I ;
e . U (v 27
oM n 214 i) @0
which is uscful as it is somectimes desired to avoid the mean anomaly in deriving explicit forms for
the Lagrange equations.
Iiquations for the osculating periapsis and apoapsis canbe derived to he [Kaula]):

. (] - 0)2 Y \/];7—4}’5 -~
by e S Uiy~ o > Ui, (28)
7 )

nac

. (] + (?)2 N \/] - (’72 -
: e 2 Ji, — ———— Ji 29
"a nae - Usns Ui, (29)

nac

where v is the arguinent of periapsis.

For the Castaliamodel (or any uniformly rotating asteroid) the equations of motionin
scalar forinreduce to:

P wys wle AU, (30)
U4 2wi = W'y - U,y (31)
5o U, (32)

The Jacobi constant ' is explicitly calculated as:
CcC = V(ﬂf, Y, Z) - f"}; (33)
where

P
Viz,y, 2) = sz(atz -1 y2) 1U(2,y,2) (34)

is the modified potential and
T, = 5 (a',? , yz + 22) (35)

is the kinetic cnergy of the particle with respect to the rotating ast eroid.

4 Dynamics About Castalia

In the absence of solar perturbations, the orbital dynamics of a particle far from Castalia approach
those for the classical case of motionabout au oblate planet (Schecres, 1994). Close to Castalia,
however, this comparison is no longer valid and the orbits inay exh ibit unstable and even chaotic
behavior (Chauvincau et al., 1994). There are several approaches that canilluminate the dynamics
and the general structure of phase spaceinthis situation.




41 Zero-Velocity Surfaces

Zero-velocity surfaces, definedusing the Jacobi integral, provide concrete information regarding
the possible motion of a particle. Since 7y, > O it is possible to defitic aninequality

V(e,y,2 ) > C (36)

that partitions the @, y, 2 space into regions where the particle may be found and where it inay not
be found, given a specific value of (/. Notethal V(a,y,2)> 0 over the eutire space. Thus, if

(' <0, theinequality is identically satisfied andthere are no a priori constraints on where the
particle may be found.

If ¢ >0, there will beregions of space where the inequality is violated, and hence where no
particle may travel. When these forbidden regions separate space into disjoint regions a particle
can never travel between these regions, no matter what its initial conditions are. The general
situation is discussed more Tully in (Scheeres, 1994), where the central body is assumed to be a
tri-axial ellipsoid.

Zero-velocity surfaces arc defined by the equation:

Ve, y,2) = ¢ (37)

This equation defines a 2-dimensional surface in the 3-dinensional 2-y-z space. As the value of the
Jacobiconstant C' is varied, the surfaces change. At critical values of C the surfaces intersect or
close in upon themselves al points inthe 2-y-z space usually called equilibrium, or critical, points.
Following inFigures 2-4 arc projections of the zero-vclocil.v surface ontothe 2 = O, y= O and

2 = O planesrespectively. The surfaces are all evaluated close to the critical values of C. The
mro-velocity curves prescnted here may beinterpretedinmuch the saimne way as for the restricted
3-body problem (Hamilton & Burns, 1991).
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4.2 Synchronous Orbits and Stability

Clearly scen in Figure 2 are four critical points, all of which lie near the cquator and are separated
by approximmately 900 inlongitude. At these points there is a net zero acceleration acting on the
particle in the rotating frame, thus a particle placed there willideally remainin such an orbit
indefinitely. These are truly circular orbits which are exactly synchironous with Castalia’s rotation
rats.

A morc dircet manner of computing these equilibriuin points is tofindall the solutions of
W (r)=0. For a general gravity field there arc no a priori number of solutions to this equation,
the nummber of solutions depends on the shape and spinrate of the body. For Castalia there arc
only 4 solutions. Call the synchronous orbits at the long ends of Castalia the o S(addle) solutions,
and those atl the shorter ends of Castalia the 4 Clenter) solutions. For the given parameters of
Castalia, the locations and Jacobi constant valucs of these orbits arc:

rys= (0.956, -1 17,0.021) kill ; Cyg = 2.0221 x 1077 km?/s*
r_g: (—.910, - .041 ,0.024) ki ; (_s= 1.9535 x 10”7 kin®/s? (38)
ryjcs (0.049,0.727,0.011) kill ;Cyc = 16755 x 10" kin?/s?
r_c¢= (0020, —.744, 0.006) kin ; C_¢ = 1.6672 x 1 0"kin?/s?

For Castalia all four synclironous orbits are unstable (this rmeans that a particle perturhed
slightly from any of these orbits will depart the equilibriumn pointin a hyperbolic fashion). The
4 S orbits arc hyperbolically unstable. Thus, any particle displaced from these ljody-fixed points
will depart from that point on alocal hyperbola. Figure 5 shows the stable and unstable inanifolds
of these points. Note that cach of these points has stable and unstable inanifolds trapped near the
asteroid as well as stable and unstable manifolds trapp cd away from the asteroid. ach manifold is
a one dimensional object in phase space (which is a gencric property of such hyperbolic unstable
points).

These manifolds aso provide the limiting escape trajectory for a particle as follows, Suppose
the particle is started from Castalia’s surface with a Jacobi constant incrementally less than C's
and along the stable nanifold. Then the particle will follow the stable manifold as it approaches
the S equilibrium point, taking an arbitrarily long time to arrive a this point. Once in the
neighborhood of the point, ihe particle will come under the influence of anunstable manifold. If it
comes under the influence of the trapped unstable manifoldit will fall back onto the asteroid. 1f it
comies under the influence of the unstable manifold trapped away from thic asteroid, it will move
away from the asteroid along this manifold and will never 1eturntothe ast eroid surface.

The 4 C orbits arc complex unstable. ‘Jbus, any particle displaced from these orbits will
depart from that point on a (locally) hyperbolic spiral. lath of these manifolds is a 2-dimensional
object in phase space and cannot be traced out as the hyperbolic manifolds of the 4.5 orbits could
be. Figure 5 also shows particular trajectories from the stable and unstable manifolds of the 1.
orbits. These manifolds tend to licin the equatorial plane of Castalia, and cause the radius of the
trajectory to oscillate in an unstable manner, thus causing either close approaches to, or impact
with, the asteroid.

The instability of thed C equilibrium points highlights a classification that can be apphed
to Castalia (and to any uniformly rotating asteroid). The classification, as originaly defined
(Scheeres, 1994), apphestoany body with 4 synchronous orbits. If two of theseorbits arc unstable
(the S orbitsyand two of thescorbits arc stable (the C orhits), then the asteroid is classified as
Typel. If al four of theorbits arc unstable,as with Castalia, then the asicroid is classified as T'ype
11. Note that the ,S orbits arc always unstable.
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IFigure 5: Segmients of the Stable & Unstable Manifolds of the EquilibriumPoints. Stable inanifolds
arc dottedlines, unstable manifolds are dashed lines.

4 .3 Periodic Orbit Families

We aso computed fainilies of periodic orbits about the asteroid. I'he computation of these orbits
requires a precision integration routine and a set of software tools which alow’s one to force the
end-points of an orbit to coincide. The details of performing such acomputation involves theuse
of Poincaré maps and Newton-Raphson iteration. Givenone periodic orbit, other membersinits
family may be found via analytic continuation of the orbit with respecct tosome parameter, usually
the Jacobi constant or the orbit period.

There are 3 main families of periodic orbits c.lose to an asteroid such as Castalia: equatorial
dircct, equatorial retrograde andmnon-cquatorial.T'he retrograde orbits exist as circular orbits far
from the asteroid and continue for decreasing radius until t hey intersect the asteroid itself. The
direct orbits exist as circular orbits far from the asteroid and continue for decreasing radius until
they approachthe radii of the synchronous orbits. Then they split into elliptic orbits (with
additional complications not studied here) and can be continued until they intersect the asteroid.
The non-equatorial orbits exist only in the vicinity of certain radii where the out-of-p)lane (nodal)
period of the orbit is commensurate with the rotationrate of the asteroid. Inthe case of 1:1
commcnsurability these orbits arc continued fromn halo orbits associated with the four equilibrium
points discussed above. As the orbital period of this family is varied, theinclination varies,
approaching ¢ = 90. The familics associated with thel:1commensurability are all unstable. Other
familics inay exist at different values of commensurability.

Figures 6- 11 presentmembers of cach of these periodic orbit fainilicsimthe I)ocly-fixed
coordinate frame. Figure 6 presents some sc et members of the direct, equatorial family of
periodic orbits about Castalia. This family begins as a family of circular orbits when far from
Castalia (solid line) andthen bifurcates iuto two Tamilies of elliptic orbits when close Lo Castalia
(dashed and dotied lines). The two bifurcated branches of the family arc close to being symmetric
about they axis, and would be if Castalia were symmetric about this axis.

Figure 7 presents members of a family of retrograde, equatorial periodic orbits that also
begins as a family of circular orbits far from Castalia,andreinains essentially circular as it draws
closer to the surface of Castalia. T'his famnily is stable up to grazing orbits, except for a sinall
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Figure 6: Direct, Iiquatorial Periodic 01 bits About Castalia

interval bounded by the two dashed lines in Figure 7. The existence of the stable family indicates
that 1t is possible for particles to orbit very closc to the asteroid surface for extended periods of
time.

I'igures 8 - 10 depict members of a periodic orbit famnily that is cotnprised of orbits with a
non-zero inclination. Ideally, this family originates at the halo orbits associated with the +C
equilibrium poiuts and terminates at the halo orbits associated with the 3.5 equilibrium points (or
vice-versa). For Castalia this family does not completesucl | a path, becausc it interscets with the
longer ends of the asteroid as it moves from the 4-C point to the .5 point. The figures give
projections of some select members of this famnily into the 2-y,2-2 and y-z plancs. Castalia is not
drawn onthese figures as the orbits would be covered in some cases. All members of this family
arc unstable. A similar family also exists, ideally traversing from the--C equilibrium point
through a polar orbit to the +S equilibrium point. For densitics larger than 3 g/cmm® this family
will not intersect the asteroid. Due to the unstable nature of thesc orbits their manifolds permeate
the phase space close totihe asteroid surface, thus low specd gjecta from Castalia evolve under the
influence of these manifolds. These manifolds will intersect with Castalia’s surface or, barring that,
will escape fromthe vicinity of the asteroid.
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Figure 8:a-y Projection of Non-Equatorial Periodic orbits About Castalia




Figure 9: 2-2 Projection of Non-Equatorial Periodic 01 bits About Castalia
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Iigure 11: Three-dimensional views of non-cquatorial periodic orbits
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The stability of these periodic orbits affects the nature of motion iu the surrounding phase
space. If afamily is stable, then neighboring trajectories will oscillate aboutitand will notdiverge
exponentially fromit. If the family is unstable, thenneighboring trajectories will diverge
exponentially fromit and will wander over a region of phasc spare in general. If such anunstable
orbit lies close lo the asteroid, thenthe usual case is for the divergent trajectory to interseet the
asteroid, or to sufler close approaches which send the traject ory away on a hyperbolic orbit. Figure
12 is aplot of thenormalized Jacobi constant of a periodic orbit family inciber vs the periodic
orbit periapsis and apoaps is. I the orbit is stable, it is represented by a solid line, if unstable, by a
dotted linc. The periapsis and apoapsis of cach orbit is drawn, so a horizontal line drawn from a
particular value of the normalized Jacobi constant will inter sect the periodic orbit periapsis first,
and the apoapsis sccond. Note that the retrograde orbits (negative Jacobi constant) arc necarly
circular,
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Figure 12: Periodic Orbit Fainily Stability. Plotted is the periapsis, mecan semi-major axis and
apoapsis of the direct andretrograde equatorial orbit families. The solid lines indicate stable miem-
bers, the dashed lines indicate unstable members.

4.4 Ejection and Capture Dynamics

One of the most interesting aspects of dynamics shout asteroids is the possibility for a given orbit
to be ¢jected into a hyperbolic escape trajectory, or converscly for a hyperbolic orbit to be
captured into anellip ticorbit. The possibility of theseoccurrences was first communicatedto the
authors by J .1{. Miller (personal commmunication). Such eflcets provide mechanising for an asteroid
to shed ¢jecta, capture non-cjecla particles on its surface andtemp orarily capture neighbors of the
asteroid.

4.4.1 Resonance Effcects

The expected change in Keplerian energy and radius of periapsis and apoapsis due to particle
intcraction withthe 2nd order gravitational harmonics canbe derived as follows. Restricting
oursclves Lo the gravity potential of 2nd order only, which provides the major perturbations to the
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orbits, from ¥ uations 23, 28 and 29 we have

201
U, = lfl‘ 7";/2-9 (3 sin? o — ]) + 37'3(,'22 (] - sin? &) cos(2X) (39)
-

where sin 0 =sinisinw,u=vr 4 f and A is the particle longitude in the body-fixed coordinate
systen. This formula is specialized to the case of an equatorial elliptic orbit.

Let us estimate the total variation onemay expect intheapse radii from one periapsis
passage is derived. Weassuine that the orbital motion takes placein the equatorial plane,so
sina= 0, cosa =- 1 and A= f + v - wt, and assumc that the equation is evaluated in the vicinity
of periapsis. Later weshall perforin a quadrature of the equation aboutthe periapsis passage, so
let us neglect any terms of the differential equations which are odd shout the periapsis passage.
Restricting ourselves thusly yields the following simplified formulae:

Qprers (/“f

Cy w a2 sin 2vsin f sin 2(f - wt) (40)
2
6/” ( “f sin 2v cos 2(f — wt)
73
9 2 1(1
Yy R (7]"702)i-f sin 2uvsin fsin 2(f - wi) (41)
a(l —c

6ripr2( ’
L T 2zf (] _ ,) sin 21 cos 2(f — wt)
P

erd H

. Q727z('22f

( ’2>’
.2

- (QZf - sin 2v cos 2(f — wt)
mh" r2

Q

) (42)

(43)

where the true anomaly rate is f:i\//_ta(] —¢2)/r?, positive for direct motionand negative for
retrograde 1motion.

T'o estimate the effeet of a periapsis passage on these elements, let us introduce some
assumptions which alow for asimple quadrature. Iirst, assume that r =7, through the fiyby, that
J = fpl around the 1yby, and finally that the osculating elements are nominally conserved during
the closest approach. This allows a quadrature about the periapsis flyby from time =7' to thine
+ 7'. Note the following results:

T ) sin 2 (w - fp> T
/ cos 2 (w - f,,) tdi = ——23— e (44)
-7 w—fp
T ) ) sin (2w - 3f,,) 7 sin (Qw - f,)
sin ftsin2 (w - ,) tdt = ——-—-— I B - 45
./:rsm Jptsin By 2w - 3 9 f; (45)
Performing the quadrature yields the formulae:
200, ']
ACy, = - §!—l—7—°——;‘—f2—f'- sin 2v
p

22 (o= f) 1 g foin (2o 3) 1 sin (2o f)7 )
w- f, T4e¢ 2w — 3§, 2w = fp
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where in the current approximation 27" represents the tine over which the particle will receive its
largest transient perturbation. A value of 7' = n/(4w) serves this purpose and corresponds to a
time period of one-fourth of the asteroid revolution (whentaken from - 7'to + 7'). Note that these
expressions give an cstimate on the amplitude of the transient variations and not necessarily the
total variation of thesc quantities.

1’0 derive similar equations for anapoapsis passage, interchange all occurrences of (—), and
(—)a, as well as changing the signs in front of the Ar, and Ary, equations. The magnitude of the
effect at apoapsis is definitely sinaller, aud may often be neglected unless the orbit is near circular.
For a retrograde orbit the angular rates w and j,, add, so againthe total magmitude of the
variation is small.

4.4.2 General Resultson Orbit Dynamics

The above equations provide insight into the dynamics of a particle in a direct orbit about an
asteroid. Thie first, and most definite, result is the relation between which quadrant (Figure 13) of
the asteroid contains the periapsis and changes inorbit energy. Every time a particle passes
through periapsis, its argument of periapsis, denoted by v, will lic iu one of these quadrants. Now,
note that the equation for AC,is proportional to the term — sin 2v. Thus, when the periapsis lies
inquadrants 1 or 111 (i.e. v € [0, 7/2],[m,37/2]), AC2 < 0 and the cucrgy decrcases. Conversely,
when the periapsis lies inquadrants 11 or IV (i.e. v €[n/2,7),[37/2,27]),AC2 > 0 aud the energy
increases. These increases and decreases in energy cau be significantly large, and allow the asteroid
to cither capture ahyperbolic orbit that passes close enough to the body, or ¢ject au elliptic orbit
into a hyperbolic orbit that escapes from the asteroid. Thus a hyperbolic flyby with periapsis in
quadrants1 or 111 may be subject to capture, and au clliptic orbit with periapsis in quadrants 11 or
IV may be subject to ¢jection.

For hyperbolic orbits, there is iu genera] only one pass through the systemn and asingle
chance at capture. For clliptic orbits, if not ejected from the asteroid the orbits” argument of
periapsis will berandomly distributed about the asteroid from orbit to orbit. Even if some
resonance originally exists inthe orbit, the act of passing through periapsis will iu general destroy
the resonance that existed unless the argument of periapsis lies along the divisions between
quadrants) where we find closed, periodic orbits close to the asteroid. 1nthe general case the
resonances cannol be preserved, due to the timing chianges from orbit to orbit. Thus,in general,
anclliptic orbit. will encounter many opportunities to be ejected from the system. If the flyby
periapsis is In quadrants ] or 11, thenthe orbits’ apoapsis is drawn iu towards the asteroid, which
may heighten the effect of the subsequent periapsis passage. Eventually, the periapsis will licin
quadrants 11 or 1V, aud ejectionbecome a possibility. Note that a mitigating feature is that
changes iu the periapsis radius movein the opposite direction of tile changesin the apoapsis
radius. ‘1'bus, for a quadrant 1 or 111 flyby, 1he orbit becomes more circular and, if the periapsis
radius changes by a significant amount, the subscquent orbit’s periapsis may be large enough to
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Iigure 13: Quadrants 1- 1V as defined for Castalia

avoid somc of the large changes. Conversely, for a quadrant Il or 1V {lyhy the orbits periapsis will
decrease in gencral and subject the orbit to larger perturbat ions on ensuing passages.
4.4 .3 Capture and Escape Radius

When can one periapsis passage yield a large enough change in the Keplerian energy to cither
capture a hyperbolic orbit or ¢ject an elliptic orbit ? A parabolic orbit has zero Keplerian energy,
so substituting the proper termsin

A (/‘2 - (/'2 = 0O (50)
yiclds the condition:

o2y BroCanty sin2v

= 1
0 2
2(14 ¢)sin2 (w - f,)) T ian (Qw - 3f,,) T s <2<.u - f,) T
A T e A (51)
w— 1 Qw--- 3 1}, 2w f
where
. 11 - ¢) L
o= ﬂ’,’,?i (52)
])

It is immediately clear that for a hyperbolic orbit to be captured its periapsis must liein
quadrants 1 or lll. Conversely, for anelliptic orbit to be ejected its periapsis st lic in quadrants
11 or 1V. The above equation defines one curve in the (7, ¢) plane for cach value of ¥.Qrbits which
lic hetween this curve and e = 1 may be subject to either capture or cjection during any periapsis
passage if the passage occurs inthe proper quadrant. It is important to note that an orbit lying in
these regions is not guarantecd to be captured or cjected. Also, anelliptic orbit outside of the
ejection region may still be ¢jected after several periapsis passages. Figure 14 presents this curve,
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Figure 14: Limiting Conditions for I’article Capture and Fjecticy at Castalia

the lower curve being defined for passage through quadrants1l or 1V, andthe upper curve for

passage throughquadrants 1 or 111.

Iigurc 15 provides additional details for the capture conditions and plots the capture curve
condition in terms of the periapsis radius and Vi, of the particle. For Castalia the maximum
capture Vo is less than ~ 0.4 m/s. For larger asteroids this numberimay grow appreciably.
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4.4 .4 Resonance Effcets

The 1:1 and 2:3 resonance lines inFigure 14 correspond to t he periapsisradius - eccentricity
combinations which provide these resonances between the asteroid rotation rate and particle true
anomaly rate al periapsis. In the current formulation, the resonant term becomes proportional to
7', so that the current results are somewhat conservative. 1t is expected that the change in orbital
cnergy will be greatest when the particle lies along one of these resonance lines. Thus it is
instrucliveto discuss them for a moment.

Consider a hyperbolic orbit which has a Castalia flyby within the capture linc and along the
2:3 resonance line. Assuming that the particle is captured, its eccentricity will drop to less than
one and its argument of periapsis will increase (both amounts can be estimated). Thus, after
capture around the 2:3 resonance line, the orbit will move away froimn the resonance line, perhaps
even into the region where direct ejection is nol possible. In subsequent periapsis passages the
apoapsis and periapsis changes are not expected to be as large, since the particle is not near the
resonance hine. Hence, such a capture may lead to a long-term capture of the particle in question,
although the possibility for eventual escape can never be discounted.

Conversely, if a particle becomes captured at thel:1resonance, the subsequent orbit will lie
between the two resonance lines (in the cccentrici ty - periapsis radius spacce). This particle will be
much more likely to suffer an eventual ¢jection, as it lics near two regions where the characteristic
change in orbit energy and eccentricity will be larger in genceral.

4.5 Retrograde Orbits

Retrograde orbits canbe analyzed interins of classical planctary orbiter results. Inthissituation
the semi-major axis, eccentricity andinclination have only short-period variations. The argument
of periapsis,argument of the ascending nodeandimean cpoch all have a secular variation which is
influenced most strongly by the gravity cocfficient Cz20- See (Scheeres, 1994) for a more in-depth
disc ussion of this case, including higher order effects of the gravity ficld.

I'or Castalia the evolution of the mean osculating elements is approximated by:

a = (53)
P-4, (54)
c o= e (55)
., lcosi
Q= Qo --3.35 x 10- _(1775—(_]‘_7;#5)3 (56)
_ ST SginZio
w = w,-33x10 &_7/2(] e 5 Sin e 2 (57)
- 307X 107" g st [Bgnz 58
M, = M., + t( g~ 3:35x 10 PITORITE [5 sin’ i - 1]) (58)

where the time is measured i seconds and the semi-major axis inkm. Forexainple, a circular
orbit withradius 1 ki will have a secular nodal rate up to -- 1660/day, which is quite large.

Note that if the periapsis radius of the orbitbecomes small and the eccentricity becomes
large, that the retrograde orbits may also besubject to some of the large perturbations felt by the
dircet orbits. In these situations one also observes the onsct of chaotic dynamics. Note that, from
the retrograde famnily of periodic orbits, we see that near circular orbils arc definitely stablecupto
a radius of 1 kin,and are possibly long-term stable withina radius of ~ 0.9 kin.
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5 Dynamics of Surface Particles

In this section we derive the Jocal accelerations acting on a particle as a function of surface
location on Castalia by computing the local slope at each point of its surface. Then we investigate
the dynamnics of cjectalaunched from the sur-face of the the asteroid. 1t is desirable to characterize
the final evolution of ancjected particle given its surface location andlaunch velocity, andto
characterize where on the surface e¢jecta may accumulate. This paper addresses the first concern in
detailand disc. usses the second concerninlight of the results found herein (see (Dobrovolskis &
Burns, 1980) and (Geissler et al., 1994) for a further discussion of the second effect). The the
Jacobiintegral is uscd to derive a discriminant quantity which identifics whethier or niot a particle
orbil may have come from the surface of the asteroid in the past, or if it mayimpact onthe surface
of the asteroid in the future. Next, some brief comiments on the possible nodes in which a particle
may become trapped intostable orbits about the asteriod are made. Finally we discuss the
dynamics and distribution of re-inpact gjecta is given.

51 Surface Forces

"The force acling on a particle at cachlocation on the surface of the asteroid arises from
gravitational audcentripetal accelerations. The angle between the norinal vector and the force
vector al agiven surface locationnay berelated to the local slope ¢ onthe asteroid surface:

cos(m/2 - ¢) = n.Vr (59)
Vel

For an infinitely rough surface, if the slope is less than 90° then, in general, the particle will remain

fixed. If a cocflicient of bulk friction is assumed for the surface, it is possibie to compute the

smallest angle for which a particle will be subject to sliding on the surface. Given a cocflicient of

friction for the surface-particle pair (y1p), the limiting slopc angle is computed as (Greenwood,

1988):
= tang (60)

Thus, for aninfinitely rough surface (yp = 00), the limiting slope is 90, while for a perfectly
sinooth surface (e = O), the limiting slope is O°. Whereas this bulk characterization of friction is
extremely siinplified and does not account, for theactual physics of sliding or rolling friction, it
dots provide a simple way to assign a bulk number to the surface in question. For the assuimed
density of 2.1 g/cin®the maximuim slope over the surface of Castalia is 57¢ which occurs at
latitude of -64 and longitude of -91degrees, near the crevice between Castalia’s lobes. Figure 16
shows thie contours of the slope over the surface of Castalia for a density of 2.1g/cin®,

A friction cocflicient of at least ~ 1.6 would be required for a non-sliding condition to hold
over thecentire surface of Castalia, given the above maxinumangle of 57 degrees. Previous studies
have assumed a maximum slope of 33° before slipping occurs (Thoinas et al., 1994), corresponding
to a friction cocflicient of 0.65. Thus, for the current Castalia model, there are implied slopes large
enough to allow for the migration of regolith. Aninteresting question is what the minimum density
of Castaliawouldbebefore all surface slopes are less than33°. Our computation, taken over the
entire surface,indicates a necessary density much larger than feasible or expected (by an order of
magnitude), indicating that Castalia definitely has slopes greater than 33°.

Another quantity of interest is the minimu n density which Castalia inay have before
particles al the end of asteroid are thrown ofl by cent ripetal acceleration. This densily may be
computed al cach point. of the surface by finding the necessary density for the local normal and the
local force vectorsto be orthogonal. For the Castalia shapeandrotationnodel this minimum
density is 1.3 g/cin® and occurs at the longest end of the asteroid, as expected. This places alower
bound on the density of anunconsolidated asteroid {Burns, 1975),
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52 Guaranteed Return Speed
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It is possible, by using the cxistence of the zero-velocity curves, to derive anupper value on ¢jecta
velocity which ensures that all ejecta velocities less than this value will eventually fall back onto

the surface. This upper bound is conservative. Consider the zero-velocity curves and the 4.5

cquilibrium points discussed previously. For values of C greaterthan Cy ¢ the zero-velocity curves
divide thespacc around the asteroid into atleast two distinet regions, oncconnected toinfinity

and the other(s) containing the asteroid. For the Castalia shape with a density of 2.1 g/cc, the

zero-velocity curves stilt intersect the Castalia shape when C & Cy s, thus there arc two disjoint
components of thiszero-velocity surface which contain the two ends of the asteroid. Any cjecta
launched from the surface of Castalia with a Jacobiconstant C > C'y ¢ will stay trapped closc to

the surface and will eventually reimpact the asteroid. Using this condition we can derive, as a

function of position on the Castalia surface, the maximum ejecta speed which will guarantee that
the ¢jecta will fall back onto the asteroid.For speeds greater than this speed it becomnes necessary
to investigate the individual trajectories to sec whether or not they fall back to the surface. This
speed is derived by solving the equation J(r,r)=--CysTor the asteroid relative ejecta velocity

v = ll'

v

VAVE) - Crs)

(61)




T'his result is one of several definite conclusions oncmay draw concerning the final evolution of
cjecta. Figure 17 presents a contour plot of of thelocal guar anteed return speed. The limiting
speeds are larger at the asteroid ends and in the crevice. 'The conservative nature of this bound is
indicated by the regions of zero speed over the poles of the asteroid. If the asswined Castalia
density were larger, these regions would also have positive guaranteed retur nspeed.
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Figure 17: Guaranteed Return Speeds Over Castalia’s Surface. If launchspeed is less than given
speed the particle returns to the surface.

53 Local (Normal) Escape Speed

One way lo characterize how escapespeeds will vary across the surface of Castalia is to evaluate
therequired speed norinal to thelocal surface that is necessary to ensurc escape. This dots not
guarantce that the ejecta will escape (although it will becltse to the true escape speedin general),
but it does provide a characterization for how the actual escape speeds will vary across the surface
of Castalia.

Assumec that a particle leaves the asteroid normalto the local surface,or v = vn wheren is
the local normalto the surface and v is the gjecta speed. The inertia] velocity of such a particle is:

vi = m+Qxr (62)




where r is the vector to the surface and Q2 is the asteroid’s angular velocity vector. “1°0 find the
local escape speed, set the magnitude of the inertial velocity equal to ﬂ’(r).]‘)va]uating this

condition andsolving theresultant quadratic equation yields:

v z -n-(2x/I) \/[n A x )+ 20(r) - (2 x1)’
This quantity has been computed over the surface of Castalia using the polyhedral

gravitational ficld (Figure 18) and is between 0.55 and 0.65 /s over most of the surface. Inthe
crevice the speeds arc over 0.65 m/s, w'hilt at the e1ids of the asteroid the speeds decrcase to

(63)

between 035 and 0.55 mi/s.

Iscape Speed (in/s) - - -

0.65 ---
0.55 ----
0.45
0.35 ——-
R 50
Piakd : M "l IIIIIIIIIIIIIIIIIIIIIIIIIIII ‘III , _ ;
" - Y Yo . *
.’ Y (.,' g L.t \ 0
R LN S
[y l\. . P ~
e A , Latitude (deg)
: |:r\ )
D! Seea- . RS ‘
,,,,,,, !
_’/
;;r
. . 1 1 I | .
-150 -100 -50 0 50 100 150

Longitude {deg)
Figure 18: local Norinal scape Speed Over Cast alia’s Surface. If launch speed is greater than

given speed the particle will escape,
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54 Constraints on the Origin of an Orbiting Particle

A criterion may be developed whit.11 can discriminate whether or not a particle’s trajectory could
either have emanated from the asteroid surface or will intersect the asteroid surface in the future.
T'his criteria relys on the Jacobi integral and is applicable to direct, low inclination orbits.

To establish the criterion, the Jacobi integral must first be expressedint erms of osculating
orbital elements. Assume that this evaluation occurs whenthe particle orbit crosses the equatorial
plane of the asteroid, as defined by the plane normal to the rotation pole. Then, expressing the
particle orbitinterins of osculating elements and assuming that the gravitational force potential is
approximated by j¢/r, we find:

C w~ —2% 4 w\/g r(2a — r)cosi (64)

Next consider the Jacobi integral itself, =V -- ']'1.;.1‘3V’d]1131‘i11g the Jacobi constant over
theentire asteroid surface (assuming 7= O) yields a maxiimum vaue C” of the Jacobi constant
C. Yor Castalia C* = 2.1223 x 107 kin?/s? and occurs at a latitude of -17 degrees and longitude
of 67 degrees. If aparticle trajectory intersccts the asteroid surface, that trajectory must have a
Jacobi constant less than C', as can be easily inferred from the relation ("= V — 7y and 73> O.
Thus if a particle orbit has a Jacobi constant C greater than C* , it docs not intersect with the
asteroid surface incitherthe future or thepast.

Using the relation Equation 64, we can explicitly relate a given orbit about the asteroid with
the criteria for whether it einanated from the asteroid surface. If tile incquality

7 —|wﬁ1'(2(l— ) Cos r > C* (65)

2a vV«
holds, then the particle’s trajectory could not have originated from the asteroid surface. Note that
C' > y/(2a)ingencral, as C* > p/r* > ji/(2a) in general, where r* is the radius at which the
function V is maximized and a is the semmi-major axis of the particle orbitinquestion. Thus
whenever theinclination exceeds 90° the inequalily is trivially false andthe criterion no longer
applhies.In fact, as the particle inclination progressively grows from 0° 1o 90°, the applicability of
this criterion decreases. Thus,in practice, this criterion is only useful for ncarly equatorial, direct
orbits. Notle that Dactyl is in such an orbit about Ida (Becltonet al., 1994). Allowing for tile small
angle approximation,it wouldbe valid tosel cosias 1 for 1 < 10°

Now define two characteristic lengths,

% 2
o = (. (66)
210 \ w Cosri

B S (67)

1

t

where both of these values have units of kilometers. For Castalia, these constants are foundtobe:

o« = 1303 /cos?ikm (68)
B = 0443 kmn (69)
Finally, assume that the particle orbit is evaluated atperiapsis, or r =a(1 - ¢). In this case
the inequality canbeexpressedin several different. ways, the two of imncdiate interest are:
oo - . 1 ,
(1 - ¢*)d® - 2aa® 4 2aPBa — —aff? > 0 (70)
2
(rq - a)r,% + (P2 - 2ar, + 2a8)ry - a(re - B)? > 0 (71)

A few quick notes ontheseinequalities: Condition 70 is a cubic and is useful for evaluating the
condition whene = O, Condition 71 is also valid if 7aand?y arc interchanged, and can be readily
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factored using the quadratic equation:

= daret 208 [ [ da(ra - B2 (v )
B ety ¥ [% (2 = Bare 4 SaB) 1 (72)

Tp >

This incquality is plotted inFigure 19 for i = O from 7q =1, to Pa-»00. Faking the limit7a — 00
yields the limiting inequality r,, > . in the figure, any particle whose orbit which falls to the right
of thesolidline could not have come from the asteroid surface and any particle whose orbit falls to
theleft of the solid hine may have corne from the asteroid surface.

Auimportant point to note inthe plot is that all circular orbits outside of ~2km could not
have originated from Castalia’s surface. Recall that orbits with ameanscii-major axis within 1.4
ki of Castalia’s surface arc unstable. Thus, this leaves only a relatively smallrange of direct
orbits which are stable and which potentially come fromn the surface of the asteroid.
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Figure 19: 1jecta Exclusion Critcrion for == O

55 Ejects Transport into Orbit

Consider the possibilit, for ejecta to depart the surface of the asteroid andendina direct
trajectory which is ‘(stable” for soinelength of time. The direct family of periodic orbits provides a
useful mcasure of how close to theasteroid surface stable orbits exist. Yor Castalia, members of
this orbit family with periapsis inside of ~1.3km arc unstable (incan semi-major axis within~ 1.4
k). This places somc limitations on the region where an cjecta could becomne trapped in astable
orbit, depictedin Figure 20.

T'he necessary condition for ¢jecta to be placed into this stable region is that the periapsis
radius be raised by at least ~1km. The mechanism for this to occur is during anapoapsis passage
of the orbit through quadrants 1 or 111 of the asteroid. The amount of “kick” in the periapsis
radius duc to onc apoapsis passage mnay range up to the order of 0.5 kilometers assuming r, =1
kimandr, = 0.5 kin.llowever, after such a large change in periapsis subsequent changes will be
smaller due to the higher periapsis and lower eccentricity. ‘1’bus, everi after such a large changein
periapsis anumber of succesive changes would still be required to raise the periapsis into the stable
region. Note that these same orbits will be subject to changesinapoapsis radius onthe order of
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Figure 20: Stableregion of direct orbits that may originate from the surface

kilometers during cach periapsis passage, thus umplying thatit is muchmore likely that au ejection
of the particle from the Castalia system would occur.

For retrograde orbitsthesituation is diffcrent. Note that the family of retrograde orbits
exlends al the way downto the asteroid surface, with stable orbits existing within hundreds of
mcters from the asteroid surface. In this situation the ¢jecta orbits arc not susceptible to large
changes in peri- and apoapsis radius, and thus a nicchanisnilike that for direct orbits may not
apply.

A 1mnorclikely scenario follows. Consider that animpact between asteroids may effectively
disperse aportion of the asteroid into some velocity distribution. Allthat is required is that somne
members of the velocity distribution be givenspeed of ~ 0.7 kin/sin aretrograde direction, and
that the initial radius of the particle, as measured fromithe asteroid center of mass, is large enough
for the particle’s trajectory to avoid thelonger ends of the resulting asteroid. Thus this scenario
implicitly implies that one of thelonger cuds of the asteroid is removed in the collision.

56 Distribution of Re-Impact Ejects

A important issue to address is the expecled dist ribution of re-impact ejecta over the surface of
Castalia. There arc two approaches ouc may take to derive estimates of these distributions. The
first, andsim plest, is toidentily regions of the Castalia surface which havelarge slopes (as defined
earlier). Return ejects intheseregions will be susceptible to migration. T'liec second is to
characterize the trajectorics of ejecta and map these back tothe surface again.

5.6.1 Surface distribution

Note fromIigure 16 that theregions of lowest sloperange over the northpole and cover the
regions of cachlobe half-way betweenthelong endsandthe crevice. The southern pole has a
uniformly higher slope. In the vicinily of the long ends of the asteroid (around longitude 0° and
1800), theslopestendio be higher, although they donotexceed 1.5° , 80 onenay not expect much
migration away fromtheends of the asteroid.Indeed, the cuds of Castaliascemto be blunted,
perhaps indicating that natural processes have already shajped the ends of the asteroid.
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The Castalia crevice exhibits the largest slopes, as would be expected. Inthe interior of the
crevice these slopes exceed 45°, large enough for one to expect the free nigration of any loose
regolith. In these regions, however, one would expect the regolith to flow into the erevice and, over
tine, fill 1tup. Thus, whatever the current slope structure of thecrevice, it would grow stecper as
one moves back intime to the original event when the current Castalia was formed. For the
current Castalia the flow of regolith would go from the southern pole, fromthelongitude area
around ~ 70° and potentially fromthe latitudes just south of the 180° longitude into the crevice
which extends from the south of the 0° longitudein a semi-circle (inJatitude-longitude space) to
the equator at~ 70°.

For the current Castalia, a uniform influx of c¢jecta would produce a fairly uniforim
blanketing over the north pole, ends and over mostlongitudes at the equator. over the southern
hemisphere one would expect amore dynamic situation withregolith flow into the crevice. In
order toinfer an historical interpretation of past regolith redistribution, we would be forecxl to
consider the geometrical shape of each lobe and apparcut contact points, amonig other issucs. Note
that while the southern hemisphere has the largest slopes, indicating a preferred direction for
regolith flow, thetwolobes arc widely seperated there. Thus, influx of regolith, even over long
time spans, may not be adequate to “fill-in” this crevice.

5.6.2 Dynamics of ¢jecta

The distribution of re-impact ejecta is a very complex problem for several reasons. Iirst, the
paramcter space over which one must scarch to generate global results (latitude, longitude and
initial velocity vector) is very large. Second, given the severe distortion in Castalia’s gravity field
analytical methods for mapping the ejecta dynamics closc to the surface will not give an accurate
or truc picture. The “brute force” approach to investigating this question would be to perforin a
Monte Carlo analysis where the parameter space is sampled with some bounds onthe velocity
sampling. Some work has been done with this approach by other authors (G eissler et al., 1994)
using a simple shape model (a tri-axial ellipsoid) and a restricted velocity space (constrained to be
normal to surface). We planto perforin a similar analysis with the current imodel in the future,
probably using a parallel computer. In the work of Geissler, they noted the tenden cy of the
re-impacl cjecta to accurnulate on the “lcacling-edges’) of theasteroidIda. Moreover, the ejecta
which tended to accurnulate inthese regions hadinitial speeds near escape speed.

Yor the Castalia model the leading edges would be longitudes in the approximate ranges
0° — 45° and 180 ° — 225°. That a uniforinly falling ficld of ¢jecta would tend to re-impact along
the leading cdges of the asteroid can be scen using a simple analysis under the assumption that the
cjectaleave the surface near escape speed. As viewed fromincrtial space the cjecta orbits will then
tend o have larger cccentricities and hence apoapsis radii far from the asteroid. Thus, after
leaving {he asteroid surface, they will travel far enough fromn the asteroid so that their orbits will
be qualitative ly similar to standard Keplerian cllipses. On their initial return to the asteroid, then,
they may be crudely modceled as infalling particles on nearly straight lines | fixed in inertia] space.
Given such a situation, it is obvious that the leading edges of the rotating asteroid will, as a
consequence of their travel, moveinto these infalling orbits as time progresses. The trailing edges
of the asteroid will, instead, move away fromn thesecinfalling, orbits, Thus, one would expect to sec
a bias towardre-itnpacts on the leading edges of anasteroid,at least when considering c¢jecta
leaving close to escape speeds.

When the ¢jecta speeds arc lower the dynamnics become much more complicated and such a
siinple analysis dots not apply. Cast alia cscape speeds are very small (Figure 18), niuch less than
the expected impact velocity of aninterloper (which causes the initial ¢jecta field). Thus only a
small fraction of ¢ject a will potentially fall back onto the asteroid. The fraction of ejecta whose
speeds arc less than escape speed will follow an essestially chaotic orbit about the asteroid until
they cither escape or return. (DeJong & Suzuki, 1995) depicts anumber of specific trajectories
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shout the asteroid Castalia, including a re-impacting ejects trajectory andan escaping ejecta
trajectory. Both of these trajectories are very complex,and both will change substantially given
slightly different, starting conditions. Their complex nature highlights the diflicultics in arriving at
general results concerning ejecta re-distribution for low speed cjecta. For ejecta speeds which arc
very small the ¢jecta distribution will begin to mimic distril ution patterns that are normally
encountered 011 ore massive bodies, with the ejecta being distributed in the vicinity of theimpact
site.

6 Conclusions

In this paper we gave a general analysis of the dynamics of close orbits to the asteroid 4769
Castalia. All the results were possible due to the existence o f the radar derived shape androtation
model. The majority of the computations carried out inthis paper can be generated automatically
once the model of anarbitrary uniforinly rotating asteroid is given. Thus this paper outlines a
potential analysis program for classifying asteroids interms of the expected dynamics close to the
body.

‘1’here are scveral arcas touched onin this paper where additional analysisis still needed.
The predictions of the asteroid capture and ejection radius need further investigation. Issues here
include the probability of capture and the likely lifetime of a captured particle. Also, the potential
role of theresonances needs to be addressed, as they may significantly influence this phenomenon.

The distribution of impact ejecta over the surface of au asteroid isan area of research whose
surface has been barely scratch ed. Future rescarch can focus i two mam areas. The first would
expand upon the analytical approaches derived in this paper to estimate the final evolution of
cjecta. The other would approach the problem as a numerical experiment. This would retail
Monte Carlo siinulatio ns taken over the entire asteroid surface and simulations of the evolution of
specific inpact velocity fields.

A Gravity Coefficients

Following are the Castalia gravity cocflicients through order 4. These coeflicients are normalized,
as defined in (Kaula, 1966}, computed with respect to a normalizing radius 7, = .543] km. The
gencral form of the gravitational field canbe expressed as:

o0 o0 7.0 1+] . , .
U = Z Z (7) P (sin @) [Chy, cosnX + S, sinmA) (73)

=0 m=0

where 17, are the norinalized Legendre polynomial, ¢ is the spacecraft latitude and A is the
spacecraft longitude inthe body-fixed framne.



Order | Degree
0 0
! 0
1 1
2 0
2 1
2 2
3 0
3 1
3 2
3 3
1 0
4 1
4 2
4 3
4 4

Table 1. Castalia Gravity Ficld Coeflicients through Order 4

C Cocflicient
1.0
0.0
0.0

-.110298
0.0
.156733
-.015112
-.037935
.006325
.020568
.036630
.002706
-.051363

.006140
.050334
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S Cocflicient

0.0

0.0
0.0

.001211
.000616
-.013715

.000407

.003949
-.001747
-.006839
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